$C \ O \ R \ R \ E \ S \ P \ O \ N \ D \ E \ N \ C \ E$

The Use of Nearly Neat ¹⁶O¹⁸O in Spectroscopic Studies of Oxyhemerythrin and Oxyhemoglobin¹

In their interesting article on hemerythrin,² Klotz and Kurtz mention the use of nearly neat ¹⁶O¹⁸O in a resonance Raman spectroscopic study of the bonding of O_2 in oxyhemerythyrin, citing unpublished work in a dissertation.³ Your readers may be interested to learn that a prior study of the O_2 bonding in oxyhemoglobin was carried out with the same ¹⁶O¹⁸O sample, and led to a similar conclusion, i.e., that the O_2 was bonded in such a way that the two oxygen atoms were not equivalent.⁴ To the best of our knowledge, this work constituted the first preparation of neat ${}^{16}O^{\overline{18}}O$ and its first use in spectroscopy. The work represents a collaboration between the group at Northwestern and my group at Argonne National Laboratory, where the ¹⁶O¹⁸O was prepared by a rather laborious procedure that entailed the intermediate synthesis of ¹⁸O-enriched hypofluorous acid.⁵

We have subsequently developed a more convenient synthesis of nearly neat ¹⁶O¹⁸O that makes use of the re-

cently isolated fluoroxysulfate ion, 6,7 SO₄F⁻, and we anticipate that this uniquely labeled oxygen molecule will now find application in a variety of spectroscopic measurements.

Evan H. Appelman

Chemistry Division Argonne National Laboratory Argonne, Illinois 60439

(1) Based on work performed under the auspices of the Office of Energy Research, Division of Chemical Sciences, U.S. Department of (2) Klotz, I. M.; Kurtz, D. M., Jr. Acc. Chem. Res. 1984, 17, 16.
(3) Weddell, L. L. D. Ph.D. Dissertation, Northwestern University,

- Evanston, IL, 1981.
- (4) Duff, L. I.; Appelman, E. H.; Shriver, D. F.; Klotz, I. M. Biochem. Biophys. Res. Comm. 1979, 90, 1098.
- (5) Appelman, E. H.; Thompson, R. C.; Engelkemeir, A. G. Inorg. Chem. 1979, 18, 909. (6) Appelman, E. H.; Basile, L. J.; Thompson, R. C. J. Am. Chem. Soc.
- 1979, 101, 3384.
 - (7) Thompson, R. C.; Appelman, E. H. Inorg. Chem. 1980, 19, 3248.